
Flask-Whooshee Documentation
Release 0.7.0

Bohuslav "Slavek" Kabrda

Jan 23, 2022

Contents

1 Installation 3

2 Set Up 5

3 How It Works 7

4 Writing Queries 9
4.1 Search Result Ordering . 10

5 Reindexing 11

6 Manual index updates 13

7 Enabling/disabling indexing 15

8 API 17

9 Changelog 21
9.1 0.8.2 . 21
9.2 0.8.1 . 21
9.3 0.7.0 . 21
9.4 0.6.0 . 21
9.5 0.5.0 . 22
9.6 0.4.1 . 22
9.7 0.4.0 . 22

10 Additional Information 23
10.1 License . 23

Python Module Index 25

Index 27

i

ii

Flask-Whooshee Documentation, Release 0.7.0

Customizable Flask-SQLAlchemy - Whoosh Integration

Flask-Whooshee provides more advanced Whoosh integration into Flask. Its main power is in the ability to index and
search joined queries.

Contents 1

Flask-Whooshee Documentation, Release 0.7.0

2 Contents

CHAPTER 1

Installation

Install the extension with one of the following commands:

$ easy_install Flask-Whooshee

or alternatively if you have pip installed:

$ pip install Flask-Whooshee

3

Flask-Whooshee Documentation, Release 0.7.0

4 Chapter 1. Installation

CHAPTER 2

Set Up

Flask-Whooshee supports two different methods of setting up the extension. You can either initialize it directly, thus
binding it to a specific application instance:

app = Flask(__name__)
whooshee = Whooshee(app)

and the second is to use the factory pattern which will allow you to configure whooshee at a later point:

whooshee = Whooshee()
def create_app():

app = Flask(__name__)
whooshee.init_app(app)
return app

Following configuration options are available:

Option Description
WHOOSHEE_DIR The path for the whoosh index (defaults to whooshee)
WHOOSHEE_MIN_STRING_LENMin. characters for the search string (defaults to 3)
WHOOSHEE_WRITER_TIMEOUTHow long should whoosh try to acquire write lock? (defaults to 2)
WHOOSHEE_MEMORY_STORAGEUse the memory as storage. Useful for tests. (defaults to False)
WHOOSHEE_ENABLE_INDEXINGSpecify whether or not to actually do any operations with the Whoosh index

(defaults to True).

New in version 0.4.0: It’s now possible to register whoosheers before calling init_app.

For example:

db = SQLAlchemy()
we don't pass app, but call init_app in create_app below
whooshee = Whooshee()

def create_app():

(continues on next page)

5

Flask-Whooshee Documentation, Release 0.7.0

(continued from previous page)

app = Flask(__name__)

db.init_app(app)
whooshee.init_app(app)
return app

@whooshee.register_model('text')
class Article(db.Model):

id = db.Column(db.Integer, primary_key=True)
text = db.Column(db.UnicodeText)

Changed in version 0.4.0: The init_app function now works properly with multiple Flask application objects.

New in version development: Added WHOOSHEE_MEMORY_STORAGE config variable.

6 Chapter 2. Set Up

CHAPTER 3

How It Works

Flask-Whooshee is based on so-called whoosheers. These represent Whoosh indexes and are responsible for indexing
new/updated fields. There are two types of whoosheers. The simple model whoosheers, that indexes fields from just
one index:

@whooshee.register_model('title', 'content')
class Entry(db.Model):

id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.String)
content = db.Column(db.Text)

This will make the columns title and content searchable.

For more advanced use cases you can create your own custom whoosheers which will allow you to create indexes and
search across multiple tables. Create them like this:

from flask_sqlalchemy import SQLAlchemy
from flask_whooshee import Whooshee, AbstractWhoosheer

class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String)

you can still keep the model whoosheer
@whooshee.register_model('title', 'content')
class Entry(db.Model):

id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.String)
content = db.Column(db.Text)
user = db.relationship(User, backref=db.backref('entries'))
user_id = db.Column(db.Integer, db.ForeignKey('user.id'))

Now we create a custom whoosheer class which we will use to update the User and Entry indexes:

7

Flask-Whooshee Documentation, Release 0.7.0

@whooshee.register_whoosheer
class EntryUserWhoosheer(AbstractWhoosheer):

create schema, the unique attribute must be in form of
model.__name__.lower() + '_' + 'id' (name of model primary key)
schema = whoosh.fields.Schema(

entry_id = whoosh.fields.NUMERIC(stored=True, unique=True),
user_id = whoosh.fields.NUMERIC(stored=True),
username = whoosh.fields.TEXT(),
title = whoosh.fields.TEXT(),
content = whoosh.fields.TEXT())

don't forget to list the included models
models = [Entry, User]

create insert_* and update_* methods for all models
if you have camel case names like FooBar,
just lowercase them: insert_foobar, update_foobar
@classmethod
def update_user(cls, writer, user):

pass # TODO: update all users entries

@classmethod
def update_entry(cls, writer, entry):

writer.update_document(entry_id=entry.id,
user_id=entry.user.id,
username=entry.user.name,
title=entry.title,
content=entry.content)

@classmethod
def insert_user(cls, writer, user):

pass # nothing, user doesn't have entries yet

@classmethod
def insert_entry(cls, writer, entry):

writer.add_document(entry_id=entry.id,
user_id=entry.user.id,
username=entry.user.name,
title=entry.title,
content=entry.content)

@classmethod
def delete_user(cls, writer, user):

pass # TODO: delete all users entries

@classmethod
def delete_entry(cls, writer, entry):

writer.delete_by_term('entry_id', entry.id)

To register all whoosheers in one place, just call the Whooshee.register_whoosheer() method like this:

whooshee.register_whoosheer(EntryUserWhoosheer)

8 Chapter 3. How It Works

CHAPTER 4

Writing Queries

After the whoosheers have been registered, you can leverage the query_class provided by Whooshee and write queries
like this:

will find entries whose title or content matches 'chuck norris'
Entry.query.\

whooshee_search('chuck norris').\
order_by(Entry.id.desc()).\
all()

You can even join queries and search them like this (using the advanced example from above):

will find any joined entry<->query,
whose User.name or Entry.title or Entry.content
matches 'chuck norris'
Entry.query.join(User).\

whooshee_search('chuck norris').\
order_by(Entry.id.desc()).\
all()

The whoosheer that is used for searching is, by default, selected based on the models participating in the query. This
set of models is compared against the value of models attribute of each registered whoosheer and the one with an exact
match is selected. You can override this behaviour by explicitly passing whoosheer that should be used for searching
to the WhoosheeQuery.whooshee_search() method. This is useful if you don’t want to join on all the models
that form the search index. For example:

Entry.query.\
whooshee_search('chuck norris', whoosheer=EntryUserWhoosheer).\
order_by(Entry.id.desc()).\
all()

If there exists an entry of a user called ‘chuck norris’, this entry will be found because the custom whoosheer, that
contains field username, will be used. But without the whoosheer option, that entry won’t be found (unless it has
‘chuck norris’ in content or title) because the model whoosheer will be used.

9

Flask-Whooshee Documentation, Release 0.7.0

4.1 Search Result Ordering

By default only first 10 (for optimization reasons) search results are sorted by relevance. You can modify this behaviour
by explicitly setting the value of order_by_relevance parameter of the whooshee_search method.

Return all search results sorted by relevance (only Chuck Norris can do this):

Entry.query.join(User).\
whooshee_search('chuck norris', order_by_relevance=-1).\
all()

Return first 25 rows sorted by their relevance:

Entry.query.join(User).\
whooshee_search('chuck norris', order_by_relevance=25).\
all()

Disable sorting altogether:

Entry.query.join(User).\
whooshee_search('chuck norris', order_by_relevance=0).\
all()

10 Chapter 4. Writing Queries

CHAPTER 5

Reindexing

If you lost your search index data and you need to recreate it or you are introducing Flask-Whooshee to an existing
application and need to index already existing data, you can use the Whooshee.reindex() method to reindex
your data:

from flask_whooshee import Whooshee
whooshee = Whooshee(app)
whooshee.reindex()

New in version v0.0.9.

11

Flask-Whooshee Documentation, Release 0.7.0

12 Chapter 5. Reindexing

CHAPTER 6

Manual index updates

If your application depends heavily on write operations and there are lots of concurrent search-index updates, you
might want opt for a cron job invoking whooshee.reindex() periodically instead of employing the default index
auto-updating mechanism.

This is especially recommended, if you encouter LockError raised by python-whoosh module and setting
WHOOSHEE_WRITER_TIMEOUT to a higher value (default is 2) does not help.

To disable index auto updating, set auto_update class property of a Whoosheer to False:

@whooshee.register_whoosheer
class NewEntryUserWhoosheer(EntryUserWhoosheer):

auto_update = False

New in version v0.5.0.

13

Flask-Whooshee Documentation, Release 0.7.0

14 Chapter 6. Manual index updates

CHAPTER 7

Enabling/disabling indexing

By setting the configuration option WHOOSHEE_ENABLE_INDEXING to False, you can turn of any operations
with the Whoosh index (creating, updating and deleting entries). This can be useful e.g. when mass-importing large
amounts of entries for testing purposes, but you don’t actually need the whooshee fulltext search for these tests to pass.

Note, that once the Whooshee(app) call is done, the value of this configuration setting can only be changed by using
app.extensions['whooshee']['enable_indexing'] = <value> (where value is either True or
False).

New in version v0.5.0.

15

Flask-Whooshee Documentation, Release 0.7.0

16 Chapter 7. Enabling/disabling indexing

CHAPTER 8

API

class flask_whooshee.Whooshee(app=None)
A top level class that allows to register whoosheers and adds an on_commit hook to SQLAlchemy.

There are two different methods on setting up Flask-Whooshee for your application. The first one would be to
initialize it directly, thus binding it to a specific application instance:

app = Flask(__name__)
whooshee = Whooshee(app)

and the second is to use the factory pattern which will allow you to configure whooshee at a later point:

whooshee = Whooshee()
def create_app():

app = Flask(__name__)
whooshee.init_app(app)
return app

Please note that Whooshee will replace the Flask-SQLAlchemy’s db.Model.query_class with a whoosh specific
query class, WhoosheeQuery which will enable full-text search on the registered model.

classmethod camel_to_snake(s)
Constructs nice dir name from class name, e.g. FooBar => foo_bar.

Parameters s – The string which should be converted to snake_case.

classmethod create_index(app, wh)
Creates and opens an index for the given whoosheer and app. If the index already exists, it just opens it,
otherwise it creates it first.

Parameters

• app – The application instance.

• wh – The whoosheer instance for which a index should be created.

classmethod get_or_create_index(app, wh)
Gets a previously cached index or creates a new one for the given app and whoosheer.

17

Flask-Whooshee Documentation, Release 0.7.0

Parameters

• app – The application instance.

• wh – The whoosheer instance for which the index should be retrieved or created.

init_app(app)
Initialize the extension. It will create the index_path_root directory upon initalization but it will not create
the index. Please use reindex() for this.

Parameters app – The application instance for which the extension should be initialized.

on_commit(changes)
Method that gets called when a model is changed. This serves to do the actual index writing.

register_model(*index_fields, **kw)
Registers a single model for fulltext search. This basically creates a simple Whoosheer for the model and
calls register_whoosheer() on it.

register_whoosheer(wh)
This will register the given whoosher on whoosheers, create the neccessary SQLAlchemy event listeners,
replace the query_class with our own query class which will provide the search functionality and store the
app on the whoosheer, so that we can always work with that. :param wh: The whoosher which should be
registered.

reindex()
Reindex all data

This method retrieves all the data from the registered models and calls the update_<model>() function
for every instance of such model.

class flask_whooshee.WhoosheeQuery(entities, session=None)
An override for SQLAlchemy query used to do fulltext search.

whooshee_search(search_string, group=<class ’whoosh.qparser.syntax.OrGroup’>,
whoosheer=None, match_substrings=True, limit=None, or-
der_by_relevance=10)

Do a fulltext search on the query. Returns a query filtered with results of the fulltext search.

Parameters

• search_string – The string to search for.

• group – The whoosh group to use for searching. Defaults to whoosh.qparser.
OrGroup which searches for all words in all columns.

• match_substrings – True if you want to match substrings, False otherwise

• limit – The number of the top records to be returned. Defaults to None and returns all
records.

class flask_whooshee.AbstractWhoosheer
A superclass for all whoosheers.

Whoosheer is basically a unit of fulltext search. It represents either of:

• One table, in which case all given fields of the model is searched.

• More tables, in which case all given fields of all the tables are searched.

classmethod prep_search_string(search_string, match_substrings)
Prepares search string as a proper whoosh search string.

Parameters

• search_string – The search string which should be prepared.

18 Chapter 8. API

https://whoosh.readthedocs.io/en/latest/api/qparser.html#whoosh.qparser.OrGroup
https://whoosh.readthedocs.io/en/latest/api/qparser.html#whoosh.qparser.OrGroup

Flask-Whooshee Documentation, Release 0.7.0

• match_substrings – True if you want to match substrings, False otherwise.

classmethod search(search_string, values_of=”, group=<class
’whoosh.qparser.syntax.OrGroup’>, match_substrings=True, limit=None)

Searches the fields for given search_string. Returns the found records if ‘values_of’ is left empty, else the
values of the given columns.

Parameters

• search_string – The string to search for.

• values_of – If given, the method will not return the whole records, but only values of
given column. Defaults to returning whole records.

• group – The whoosh group to use for searching. Defaults to whoosh.qparser.
OrGroup which searches for all words in all columns.

• match_substrings – True if you want to match substrings, False otherwise.

• limit – The number of the top records to be returned. Defaults to None and returns all
records.

19

https://whoosh.readthedocs.io/en/latest/api/qparser.html#whoosh.qparser.OrGroup
https://whoosh.readthedocs.io/en/latest/api/qparser.html#whoosh.qparser.OrGroup

Flask-Whooshee Documentation, Release 0.7.0

20 Chapter 8. API

CHAPTER 9

Changelog

9.1 0.8.2

• Fixed compatibility with the latest flexmock

• Switched from nose to pytest

9.2 0.8.1

• SQLAlchemy 1.4+ compat fix included (missing _join_entities attribute)

9.3 0.7.0

• Dropped support for Python 3.3 and 3.4, added support for Python 3.7.

• Added support for PK’s of type BigInteger. Thanks to Andrew Henry for contributing the fix.

• Index writers now properly cancel Whoosh transaction and release index lock on exceptions.

9.4 0.6.0

• Fixed searching for unicode strings in Python 2. Thanks to Grey Li for contributing the fix.

• Added support for registering models with non-int primary keys.

21

Flask-Whooshee Documentation, Release 0.7.0

9.5 0.5.0

• Added configuration option WHOOSHEE_ENABLE_INDEXING that allows turning off indexing (useful when
importing large test sets that don’t require indexing in order to actually execute the tests).

• Fixed whooshee search for str objects containing unicode characters on Python 2.7.

• Python 2.6 is no longer officially supported, although flask-whooshee should keep working on it.

• Added the option to do manual index updates (through AbstractWhoosheer.auto_update attribute).

9.6 0.4.1

• SQLAlchemy’s aliased entities are now recognized by whooshee_search.

• Added support for RamStorage. Can be enabled by setting WHOOSHEE_MEMORY_STORAGE to True.

9.7 0.4.0

• init_app now properly registers multiple Flask applications.

• It’s now possible to register whoosheers before calling init_app.

22 Chapter 9. Changelog

CHAPTER 10

Additional Information

10.1 License

Copyright (c) 2016, Slavek Kabrda and individual contributors
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

• search

23

Flask-Whooshee Documentation, Release 0.7.0

24 Chapter 10. Additional Information

Python Module Index

f
flask_whooshee, ??

25

Flask-Whooshee Documentation, Release 0.7.0

26 Python Module Index

Index

A
AbstractWhoosheer (class in flask_whooshee), 18

C
camel_to_snake() (flask_whooshee.Whooshee class

method), 17
create_index() (flask_whooshee.Whooshee class

method), 17

F
flask_whooshee (module), 1

G
get_or_create_index()

(flask_whooshee.Whooshee class method),
17

I
init_app() (flask_whooshee.Whooshee method), 18

O
on_commit() (flask_whooshee.Whooshee method), 18

P
prep_search_string()

(flask_whooshee.AbstractWhoosheer class
method), 18

R
register_model() (flask_whooshee.Whooshee

method), 18
register_whoosheer()

(flask_whooshee.Whooshee method), 18
reindex() (flask_whooshee.Whooshee method), 18

S
search() (flask_whooshee.AbstractWhoosheer class

method), 19

W
Whooshee (class in flask_whooshee), 17
whooshee_search()

(flask_whooshee.WhoosheeQuery method),
18

WhoosheeQuery (class in flask_whooshee), 18

27

	Installation
	Set Up
	How It Works
	Writing Queries
	Search Result Ordering

	Reindexing
	Manual index updates
	Enabling/disabling indexing
	API
	Changelog
	0.8.2
	0.8.1
	0.7.0
	0.6.0
	0.5.0
	0.4.1
	0.4.0

	Additional Information
	License

	Python Module Index
	Index

